. В 2017 году из одиннадцати университетов, входящих в топ-100 предметных рейтингов ведущих рейтинговых агентств (ARWU, QS, THE), шесть являются участниками Проекта «5-100». Это ведущие университеты России: МФТИ, НИТУ «МИСиС», ВШЭ, НИЯУ МИФИ, НГУ и ИТМО.
«Для нас эта программа 5-100 открыла путь в будущее, – говорит проректор по науке и инновациям Национального исследовательского технологического университета «МИСиС» Михаил Филонов. – Можно выразиться так: это не «деньги проедания», это «деньги развития». По сравнению с любыми другими федеральными программами, 5-100 позволяет закупить оборудование, пригласить любого ведущего ученого, построить новые лаборатории. Кроме того, деньги 5-100 позволяют формировать собственную научную повестку и коррелировать ее с мировой. Нам эта программа дает процентов семьдесят топовых публикаций, которые выделяют НИТУ МИСиС на общем фоне, а наши новые лаборатории являются локомотивом для всей российской науки. Мы уже «влезли» в топ-100 по металлургии, горному делу, а в топ-200 – материаловедению, – мы считаем, что для науки это небывалая динамика роста».
Какие же ответы на вопросы и полученные научные результаты формируют уверенность ученых и руководителей вузов, существующих при поддержке проекта «5-100», в эффективности программы?
Ученые международного консорциума генетиков FANTOM5, с участием сотрудников МФТИ, составили атлас микроРНК, который поможет понять, какую роль они играют в развитии разных болезней.
В ходе исследований удалось найти примерно три сотни молекул микроРНК, о которых ученые раньше не подозревали, и раскрыть часть их функций.
Изучение микроРНК, как объясняют ученые, осложнено тем, что они «работают» только в живых клетках, причем только в некоторых из них. Поэтому их структуру и роль крайне сложно определить, используя лишь компьютеры и установки для секвенирования генома.
«Создание полного атласа микроРНК в различных клетках приблизило нас к пониманию полной картины регуляции генов», – прокомментировала результат один из его авторов, молекулярный биолог Центра биотехнологий РАН и МФТИ Юлия Медведева.
К примеру, за последние пять лет биологи обнаружили, что сбои в работе микроРНК являются причиной появления «голосов» в головах у людей, страдающих от шизофрении, раскрыли их связь с раком, диабетом и многими другими серьезными болезнями. Поэтому трудно переоценить важность данного исследования.
Ученые Национального исследовательского ядерного университета «МИФИ» совместно с международным коллективом астрофизиков из крупнейших стран Европы (Великобритании, Италии, Франции, Германии, Испании) воспроизвели процесс формирования планет вокруг звезд, опубликовав результаты в престижном научном журнале Science Advances.
Они провели лабораторное моделирование приращения массы небесного тела путем гравитационного притяжения материи из окружающего космоса – так называемой аккреции. Ее изучение дает информацию об обмене массой, энергией и взаимном расположении между «собирающим» объектом и его окружением.
«Наши результаты подчеркивают необходимость правильного учета поглощения излучения в плазме для грамотного моделирования аккреционных процессов в молодых звездах», — заявил один из авторов статьи, сотрудник Института Лазерных и плазменных технологий НИЯУ МИФИ Евгений Филиппов.
Другая научная группа НИЯУ МИФИ под руководством ректора Михаила Стриханова включилась в международную коллаборацию STAR. Коллектив первым в мире экспериментально подтвердил наличие вихревой структуры у кварк-глюонной материи, образуемой в столкновениях тяжелых ядер.
Это позволяет предполагать, что материя ранней Вселенной была очень горячей и очень текучей субстанцией, в которой могли существовать квантовые вихри с экстремальными характеристиками.
«Такой результат критически важен для дальнейших исследований, которые, с одной стороны, обеспечат существенный прогресс в понимании сложных взаимодействий между кварками и глюонами, с другой — откроют новые возможности для изучения спинтроники жидкостей», — считает профессор кафедры физики НИЯУ МИФИ Виталий Окороков.
Кроме того, российские геологи (НИТУ «МИСиС») в составе крупной международной группы, куда также вошли ученые из США, Германии, Франции, Швеции, выяснили, что соединения железа и углекислоты играют определяющую роль в формировании алмазов из недр Земли и помогают их «зародышам» выживать при сверхвысоких давлениях и температурах.
Долгое время ученые гадали, как веществам, сформировавшимся на глубине в 600 километров, удалось сохраниться при путешествии в сторону ядра Земли. По словам авторов, их данные доказывают, что экзотическая ортоугольная кислота существует не только в ядрах планет-гигантов, но и в мантии Земли.
Некоторые исследования со значительным вкладом российских ученых стали заметным событием на международном уровне, будучи проведенными в составе малых групп кооперации.
Авторитетный журнал Optics & Photonics News (профессиональное издание для физиков) каждый год называет 30 самых важных научных открытий. В их число попала и научная разработка ИТМО, названная прорывом года в фотонике.
Сотрудничая с Австралийским национальным университетом, специалисты из ИТМО представили первый в мире «трехмерный» топологический изолятор, управляющий движением света. Речь идет об особом материале, поверхность которого проводит ток, а внутренняя часть остается изоляторами или полупроводниками.
Физики давно пытались приспособить их и для передачи света и других электромагнитных волн, однако прежде этому мешали громоздкость изоляторов и высокие потери энергии, возникавшие в процессе их работы.
«По сути, это цепочка из нанодисков, в которой электромагнитное поле локализуется на том или ином конце, – рассказывает научный сотрудник ИТМО Алексей Слобожанюк. – Мой коллега Александр Поддубный предложил теоретическую идею, потом мы сделали эксперимент в микроволнах и в оптике совместно с Иваном Синевым и Антоном Самусевым. Благодаря трехмерным изоляторам мы можем добиться такого поведения электромагнитных волн, которое раньше было технически недостижимо».
Еще одно исследование, важную часть которого выполнили научные сотрудники российского вуза, удостоилась публикации в одном из самых высокорейтинговых журналов мира Scientific Reports издательского дома Nature.
Команда ведущих мировых ученых из НИТУ «МИСиС», Университета Линчёпинга (Швеция), Института проблем материаловедения имени Францевича НАНУ (Украина) и Тринити колледжа (Ирландия) выяснила, как можно использовать графен – первый в мире двумерный материал – в качестве сенсора тяжелых металлов.
«Металлы образуют наиболее ядовитые примеси, какие только имеются в воде. Потому возможность быстрого и аккуратного их детектирования – крайне актуальная задача», — объяснил руководитель лаборатории «Моделирование и разработка новых материалов» НИТУ «МИСиС» и профессор Линчёпингского университета Игорь Абрикосов.
Поскольку графен отличается от других веществ тем, что длина свободного пробега электронов в нем очень высока, – его надеются активно использовать в электронике.
Ещё в одном престижном журнале семейства Nature (Nature Communications) вышла статья ученых МФТИ. В ходе совместного исследования с британскими физиками они обнаружили, что искусственные аналоги атомов можно использовать для «перемешивания» волн света, что ускорит разработку квантовых компьютеров и сетей передачи данных.
«Уже сейчас можно сказать, что это свойство искусственных атомов можно использовать для создания новых видов квантовой микроэлектроники,» – заявил сотрудник лаборатории искусственных квантовых систем МФТИ Олег Астафьев.
Наконец, в 2017 году российские специалисты также продемонстрировали рядом публикаций в Nature свой успех по одному из самых актуальных научных направлений – созданию метаматериалов, – искусственных структур, обладающих недостижимыми в природе свойствами.
К концу года международная группа исследователей Национального исследовательского технологического университета «МИСиС», Университета Карлсруэ и Йенского института совершила прорыв, впервые в мире создав так называемый «зеркальный» кубит, а также метаматериал на его основе.
«Такой материал можно использовать для управления системами передачи квантовых сигналов в современных квантовых компьютерах. Это один из ключевых элементов в сверхпроводниковых электронных устройствах», – сообщил инженер лаборатории «Сверхпроводящие метаматериалы» НИТУ «МИСиС» Илья Беседин.
Все эти результаты стали возможными во многом благодаря федеральной программе «Проект 5-100», которая направлена на повышение престижности и конкурентоспособности российского высшего образования.
Источник: ria.ru